

By: Mohamed Naser, Sep2023 www.nasergy.com

Nasergy Contacts/Groups

PMP Equations

No.	Topic	Equation	Equation Explanation	Example Problem with Solution
1	Actual Cost (AC)	AC	Actual Cost (AC) represents the total costs actually incurred or spent on a project. It is a direct measure of project expenses.	If the actual cost incurred on a project at a given time is \$15,000, then AC = \$15,000.
2	Planned Value (PV)	PV	Planned Value (PV) represents the authorized budget allocated to the work scheduled to be completed by a specific point in time.	If the planned budget for a project at a given time is \$10,000, then PV = \$10,000.
3	Earned Value (EV)	EV	Earned Value (EV) represents the value of work performed and completed in a project at a specific point in time.	EV = (% of Work Completed) * Total Budget. In your case, the project actual progress is at 80%, and the total

				budget is \$1,000,000. So, to calculate EV = (80%) * \$1,000,000, EV = 0.8 * \$1,000,000, EV = \$800,000
4	Cost Variance (CV)	CV = EV - AC	Cost Variance (CV) measures the cost performance by calculating the difference between earned value (EV) and actual cost (AC).	If EV = \$10,000 and AC = \$12,000, then CV = \$10,000 - \$12,000 = - \$2,000.
5	Schedule Variance (SV)	SV = EV - PV	Schedule Variance (SV) assesses the schedule performance by finding the difference between earned value (EV) and planned value (PV).	If EV = \$8,000 and PV = \$10,000, then SV = \$8,000 - \$10,000 = - \$2,000.
6	Earned Value Management (EVM)	CPI = EV / AC	Cost Performance Index (CPI) measures cost efficiency by comparing earned value (EV) to actual cost (AC).	If EV = \$800 and AC = \$1,000, then CPI = \$800 / \$1,000 = 0.8. (Overbudget)
7	Earned Value Management (EVM)	SPI = EV / PV	Schedule Performance Index (SPI) measures schedule efficiency by comparing earned value (EV) to planned value (PV).	If EV = \$800 and PV = \$1,000, then SPI = \$800 / \$1,000 = 0.8. (Behind schedule)
8	Estimate at Completion (EAC)- Bad estimation	EAC=AC+ETC	This formula calculates the Estimate at Completion when it's assumed that the current estimation was not accurate and cannot be used for the remaining works.	If BAC=\$14,000, AC = \$12,000, ETC = \$4,000, then EAC = \$12,000 + \$4,000 = \$16,000.
9	Estimate at Completion (EAC) - No Additional Variance – budget rate	EAC = AC + (BAC - EV)	This formula calculates the Estimate at Completion when it's assumed that the current variances will continue without any additional variances (parallel to budget).	If AC = \$12,000, BAC = \$20,000, and EV = \$15,000, then EAC = \$12,000 + (\$20,000 - \$15,000) = \$17,000.
10	Estimate at Completion (EAC) – Tough performance	EAC = BAC/CPI	This formula estimates the EAC by assuming that the the project is difficult and performance will remain the same till end.	If BAC = \$20,000 and CPI = 0.8, then EAC = \$20,000 / 0.8] = \$25,000.
11	Estimate at Completion (EAC) – cost and schedule constraints	EAC = AC + [(BAC - EV) / (CPI * SPI)]	In this equation, it's assumed that the remaining work will be performed at the cumulative Cost Performance Index CPI, in addition to	If AC = \$12,000, BAC = \$20,000, EV = \$15,000, CPI = 1.25, and SPI = 0.9, then EAC = \$12,000 + [(\$20,000 - \$15,000) / (1.25 * 0.9)] = \$19,200.

			having schodula or milesters	
			having schedule or milestone	
12	To-Complete Performance Index	TCPI = (BAC - EV) / (BAC - AC)	constrains. TCPI predicts the required cost performance to achieve the	If BAC = \$100,000, EV = \$20,000, and AC = \$30,000, then TCPI =
	(TCPI)	(BAC - AC)	project's budget at completion (BAC) based on the current performance. TCPI= Remaining Works / Remaining Money	(\$100,000 - \$20,000) / (\$100,000 - \$30,000) = 1.25.
13	Three-Point	TE = (O + M + P) / 3	Three-Point Estimation	If O = 5 days, M = 10 days, and P =
	Estimation (Simple	12 (0 / 111 / 177 0	calculates the expected	20 days, then the Estimation = (5 +
	Average)		duration or cost by averaging	10 + 20) / 3 = 11.6 days.
			optimistic (O), most likely (M),	
			and pessimistic (P) estimates.	
14	Three-Point	PERT Estimation =	Program Evaluation and Review	If O = 5 days, M = 10 days, and P =
	Estimation (Beta –	(O + 4M + P) / 6	Technique (PERT) estimation	20 days, then PERT Estimation = (5
	PERT- Weighted		calculates expected duration	+ 4 * 10 + 20) / 6 = 10.83 days.
	Average)	25	using optimistic (O), most likely	
		25	(M), and pessimistic (P)	
		47	estimates.	
15	Float (Total Float	Total Float = LF - EF	Total Float is the amount of	If LF = 33 and EF = 20, then Total
	and Free Float)	or LS - ES	time an activity can be delayed	Float = 33 - 20 = 13 days.
		* 12	without delaying the project's	
16	Probability and	Risk Score =	completion date. The Risk Score helps prioritize	If Probability = 0.3 and Impact = 4,
10	Impact Matrix (Risk	Probability *	risks based on their likelihood	then Risk Score = 0.3 * 4 = 1.2.
	Analysis)	Impact	(Probability) and potential	THEIT KISK SCOTE = 0.5 4 = 1.2.
	7	mpace v	impact (Impact).	
17	Expected Monetary	EMV = Probability *	EMV is used to calculate the	If Probability = 0.4 and Impact
	Value (EMV)	Impact	expected financial outcome of	(impact cost in case the risk
	1-5		a risk by multiplying the	happened) = \$10,000, then EMV =
			Probability by the Impact.	0.4 * \$10,000 = \$4,000.
18	Communication	n(n-1) / 2	This formula calculates the	If there are 5 stakeholders, then
	Channels		total number of	the total channels = 5(5-1) / 2 = 10
			communication channels in a	channels.
			project with n stakeholders.	
				If there are 2 persons added then
				the total channels = 7(7-1) / 2 = 21 channels.
				And added channel are 21-
				10=11channels.
19	Present Value (PV)	PV = FV / (1 + r)^n	PV calculates the current worth	If FV = \$5,000, r = 0.05, and n = 3
	and Future Value	,	of a future sum of money (FV)	years, then PV = \$5,000 / (1 +
	(FV)		considering a discount rate (r)	0.05)^3 = \$4,315.46.
			and time (n) periods.	

20	Internal Rate of Return (IRR)	NPV = 0 = CF0 + (CF1 / (1 + IRR)) + (CF2 / (1 + IRR)^2) + + (CFn / (1 + IRR)^n)	NPV is used to determine the IRR, which is the discount rate at which the net present value (NPV) equals zero.	Solve for IRR when CF0 = -\$10,000, CF1 = \$3,000, CF2 = \$4,000, and CF3 = \$5,000.
21	Expected Monetary Value (EMV) for Decision Trees	EMV = Σ(Probability * Value)	EMV is used in decision tree analysis to calculate the expected value of various decision alternatives based on probabilities and values.	If Decision A has a Probability of 0.6 and Value of \$10,000, and Decision B has a Probability of 0.4 and Value of \$8,000, then EMV = (0.6 * \$10,000) + (0.4 * \$8,000) = \$9,200.
22	Present Value of Annuity (PVA)	PVA = PMT * [(1 - (1 + r)^-n) / r]	PVA calculates the present value of a series of equal payments (PMT) made over time, considering a discount rate (r) and the number of periods (n).	If PMT = \$1,000, r = 0.06, and n = 5 years, then PVA = \$1,000 * [(1 - (1 + 0.06)^-5) / 0.06] = \$4,212.74.
23	Standard Deviation (PERT Analysis)	Standard Deviation = (P - O) / 6	Standard Deviation in PERT analysis estimates the variability in project completion time based on optimistic (O) and pessimistic (P) estimates.	If O = 10 days and P = 20 days, then Standard Deviation = (20 - 10) / 6 = 1.67 days.
24	Benefit-Cost Ratio (BCR)	BCR = (PV of Benefits) / (PV of Costs)	BCR evaluates the profitability of an investment by comparing the present value of benefits to the present value of costs.	If PV of Benefits = \$40,000 and PV of Costs = \$30,000, then BCR = \$40,000 / \$30,000 = 1.33.
25	Return on Investment (ROI)	ROI = (Net Profit / Investment) * 100	ROI measures the profitability of an investment by calculating the percentage return relative to the initial investment.	If Net Profit = \$20,000 and Investment = \$50,000, then ROI = (\$20,000 / \$50,000) * 100 = 40%.
26	Work Performance Data (WPD)	WPD = Output from Executing a Process	WPD includes data on project work performance collected during the execution of project activities.	Examples of WPD include completed deliverables, test results, and issue logs.
27	Net Present Value (NPV)	NPV = \sum (Cash Flows / (1 + r)^n)	NPV evaluates the attractiveness of an investment by summing the present values of expected cash flows over time, considering a discount rate (r) and periods (n).	If cash flows for five years are - \$5,000, \$1,000, \$2,000, \$2,500, and \$3,000 with a discount rate of 0.1 (10%), then NPV = - $$5,000 / (1 + 0.1)^1 + $1,000 / (1 + 0.1)^2 + $2,000 / (1 + 0.1)^3 + $2,500 / (1 + 0.1)^4 + $3,000 / (1 + 0.1)^5 = $314.88.$
28	Cost Performance Index (CPI)	CPI = EV / AC	Cost Performance Index (CPI) measures cost efficiency by calculating the ratio of earned value (EV) to actual cost (AC).	If EV = \$15,000 and AC = \$12,000, then CPI = \$15,000 / \$12,000 = 1.25.

29	Schedule Performance Index (SPI)	SPI = EV / PV	Schedule Performance Index (SPI) assesses schedule efficiency by finding the ratio of earned value (EV) to planned value (PV).	If EV = \$9,000 and PV = \$10,000, then SPI = \$9,000 / \$10,000 = 0.9.
30	Payback Period	Payback Period = Initial Investment / Annual Cash Flow	Payback Period calculates the time required to recover the initial investment based on annual cash flows.	If the initial investment is \$50,000, and the annual cash flow is \$20,000, then the Payback Period = \$50,000 / \$20,000 = 2.5 years.

Join our WhatsApp group to get the new lectures/material

Nasergy Contacts/Groups

